

Unleashing the power of

Azure to enable critical

business decision-making

for a Travel Advisory.

- using Data Factory, ADLS Gen2, and Databricks

Summary:

In this project, Implemented end-to-end analytics on trip transaction data using

Azure services. Utilized Azure Data Factory, ADLS Gen2, and Databricks for data

transformation and pipeline resiliency. Explored Delta Lake's features for ACID

transactions, data versioning, and schema enforcement. Leveraged PySpark in

Databricks notebooks for data transformations. Scheduled pipeline in Azure Data

Factory and employed Logic Apps for email triggers, ensuring resiliency.

Problem statement

The project aims to address the limitations and challenges of traditional data lakes

for big data processing and analytics. Specifically, the challenges include:

1. Lack of ACID transactions: Traditional data lakes often lack support for

atomicity, consistency, isolation, and durability (ACID) transactions. This makes

it challenging to write reliable data pipelines and maintain data consistency.

2. Data versioning difficulties: Tracking changes made to data over time and

reverting to previous versions is a complex task in traditional data lakes. The

absence of data versioning capabilities hinders efficient data engineering

practices.

3. Inconsistent data quality: Without schema enforcement, data ingested into

traditional data lakes may lack consistency and cleanliness. This can lead to

issues during data processing and analysis.

4. Limited time travel capabilities: Traditional data lakes typically do not offer

time travel queries, which are essential for examining data at specific points in

time. This limitation hampers historical data analysis and decision-making.

5. Suboptimal query performance: Querying data from traditional data lakes can

suffer from high latency and suboptimal performance due to a lack of

advanced indexing and caching techniques.

Architecture Diagram

Tech Stack:

Language: Python, SQL, Spark

The project utilizes a combination of Python, SQL, and Spark for implementing various data

processing and analytics tasks.

Package: PySpark

PySpark is the Python library used for interacting with Apache Spark. It enables data

engineers and data scientists to leverage the power of Spark's distributed computing

capabilities through Python code.

Services: The project leverages multiple Azure services to create an end-to-end data

processing and analytics solution.

Azure Data Factory (ADF) enables the creation and orchestration of data workflows across

various sources and destinations.

Azure Blob Storage (ADLS Gen2) provides scalable and cost-effective cloud storage for

different types of data, including big data.

Azure Databricks offers a collaborative workspace for processing and analyzing large

datasets using distributed computing capabilities.

Logic Apps automates business workflows and enhances the resilience of data pipelines.

Azure SQL Database provides managed and scalable relational database solutions for

efficient data management and analysis.

Understanding the Column Structure

Key features of Delta Lake:

ACID transactions on Spark:

Delta Lake utilizes a transaction log to track all commits made to the table directory,

ensuring Atomicity, Consistency, Isolation, and Durability (ACID) transactions. It provides

Serializable isolation levels to maintain data consistency across multiple users.

Unified Batch and Stream Processing:

Delta Lake enables the integration of both batch and streaming data processing. It offers a

unified view of data from streaming sources (e.g., Kafka) and historical data (e.g., HDFS),

allowing seamless operations for streaming data ingestion, batch historic backfill, and

interactive queries.

Time Travel:

Delta Lake provides data versioning and snapshot capabilities, allowing users to query data

as if a specific snapshot represents the current state of the system. This feature enables easy

access to older versions of the data lake, facilitating activities such as audits and rollbacks.

Evolution of Delta Lake from Data Lake:

Delta Lake represents a significant evolution from traditional Data Lake architectures,

addressing limitations and introducing advanced features.

Effective Transactional Control:

Delta Lake provides robust transactional control, ensuring reliable and consistent data

operations while maintaining ACID compliance.

Schema Evolution:

Delta Lake supports seamless schema evolution, enabling easy modification and evolution

of table schemas without disrupting existing data.

Delta Format Files vs Parquet:

Delta Lake's Delta format offers advantages over Parquet files, including optimized data

storage, improved query performance, and enhanced data management capabilities.

Medallion Architecture:

Medallion Architecture: Empowering Data Excellence with Layers of Trust

Bronze Layer:

The bronze layer in the Medallion Architecture stores un-validated data. It maintains the raw

state of the data source, allowing for incremental appends over time. The data in this layer

can come from a combination of streaming and batch transactions.

Silver Layer:

The silver layer represents validated and enriched data that can be trusted for downstream

analytics. It contains a refined version of the data compared to the bronze layer and serves

as a reliable source for analytics purposes.

Gold Layer:

The gold layer consists of highly refined and aggregated data that powers analytics,

machine learning, and production applications. The data in this layer has been transformed

into valuable knowledge rather than mere information. Gold tables play a crucial role in

delivering insights and driving decision-making processes within the organization.

Steps Involved:

1st we have started Storage account with access tier as HOT

Inside delta lake we have to create Bronze, silver and Gold layer

With min of 8 max of 16 worker nodes.

Worker node memory 20GB with 10 cores each

Using below config. file able to mount the storage account with Databricks

Using below scipt we have loaded data from bronze data lake to Databricks.

Now we will create DataFlow(Low code no code) in Azure Data factory to load data from

SQL Database to bronze layer of delta lake

We also need to create link service which we need to provide in source properties

In sink we will select blob storage and default format that we would like to load.

Once done we have to save and validate if all the components are fine, then we can publish

the dataset, it will publish to git branc also we can trigger this pipeline once we are done

with publish.

When we trigger our pipeline or debug we need to monitor our logs.

Below shows data received at sink

Can validate via query editor.

Now we will do processing of data via databricks.

No we will work on silver layer, where we will transform our data to make facts dimension

data modelling.

Like wise we will create all dimension table

Now for email or notification we need to create ADF pipeline

In web activity properties we need to provide logic app URL, once trigger it will post a API

request with message in body, providing parameters

Data bricks code to write gold layer of storage account

Writing to delta table which is hive meta store

We Can connect these Hive meta table to Power BI to get insight from these tables.

Challenge Faced

 Data quality: Ensuring the accuracy, completeness, and consistency of data from

diverse sources.

 Scalability: Handling large volumes of data and accommodating future growth.

 Data integration: Integrating data from various systems and sources to create a

unified view.

 Real-time processing: Performing timely data processing and analytics to enable real-

time decision-making.

Business Benefit

 Improved data analysis and decision-making.

 Optimized data processing efficiency.

 Streamlined and organized data architecture.

 Enhanced data workflow efficiency.

 Advanced data transformation capabilities.

 Automated data processing and increased resilience.

 Proactive monitoring and quality assurance.

By: Abhishek Verma

Senior Associate- Cognizant

vermabhi.90@gmail.com

	Problem statement
	Business Benefit

