Unleashing the power of
Azure to enable critical
business decision-making
for a Travel Advisory.

- using Data Factory, ADLS Gen2, and Databricks

Summary:

In this project, Implemented end-to-end analytics on trip transaction data using
Azure services. Utilized Azure Data Factory, ADLS Gen2, and Databricks for data
transformation and pipeline resiliency. Explored Delta Lake's features for ACID
transactions, data versioning, and schema enforcement. Leveraged PySpark in
Databricks notebooks for data transformations. Scheduled pipeline in Azure Data

Factory and employed Logic Apps for email triggers, ensuring resiliency.

Problem statement

The project aims to address the limitations and challenges of traditional data lakes
for big data processing and analytics. Specifically, the challenges include:

1. Lack of ACID transactions: Traditional data lakes often lack support for
atomicity, consistency, isolation, and durability (ACID) transactions. This makes
it challenging to write reliable data pipelines and maintain data consistency.

2. Data versioning difficulties: Tracking changes made to data over time and
reverting to previous versions is a complex task in traditional data lakes. The
absence of data versioning capabilities hinders efficient data engineering
practices.

3. Inconsistent data quality: Without schema enforcement, data ingested into
traditional data lakes may lack consistency and cleanliness. This can lead to
issues during data processing and analysis.

4. Limited time travel capabilities: Traditional data lakes typically do not offer
time travel queries, which are essential for examining data at specific points in
time. This limitation hampers historical data analysis and decision-making.

5. Suboptimal query performance: Querying data from traditional data lakes can
suffer from high latency and suboptimal performance due to a lack of
advanced indexing and caching techniques.

Architecture Diagram

S0L Server

ADF
Data Ingestion

Delta Lake

Bronze Layer

Blob/ Azure
Storage

Silver Layer

Transformations

Flat Files |
3 =
Bl S :
: @\c& Gold Layer
Q,;}
Delta Tables

Tech Stack:

Language: Python, SQL, Spark

The project utilizes a combination of Python, SQL, and Spark for implementing various data
processing and analytics tasks.

Package: PySpark

PySpark is the Python library used for interacting with Apache Spark. It enables data
engineers and data scientists to leverage the power of Spark's distributed computing
capabilities through Python code.

Services: The project leverages multiple Azure services to create an end-to-end data
processing and analytics solution.

Azure Data Factory (ADF) enables the creation and orchestration of data workflows across
various sources and destinations.

Azure Blob Storage (ADLS Gen2) provides scalable and cost-effective cloud storage for
different types of data, including big data.

Azure Databricks offers a collaborative workspace for processing and analyzing large
datasets using distributed computing capabilities.

Logic Apps automates business workflows and enhances the resilience of data pipelines.

Azure SQL Database provides managed and scalable relational database solutions for
efficient data management and analysis.

Understanding the Column Structure

Trip Transaction Table

trip_id
trip_start_timestamp
trip_end_timestamp
driver_id
driver_name
source_location_address1
source_city
source_province_state
source_country
destination_location addressl
destination_city
destination_province_state
destination_country
total_distance
total_fare
trip_status
delay start time_mins
payment method
payment status
customer_id

customer_name

The unique identifier for each trip record, providing a way to differentiate between individual trips.

The timestamp indicating the start time of the trip, enabling chronological analysis and time-based insights.

The timestamp representing the end time of the trip, facilitating the calculation of trip duration and understanding trip completion times.

The identifier for the driver associated with the trip, allowing analysis of driver-specific performance and behavior.

The name of the driver, providing a human-readable identifier and allowing for a personalized analysis of driver-related metrics.
The address or location of the trip's starting point, enabling analysis of trip patterns across different geographical areas.
The city where the trip originated, providing insights into the distribution of trips across various urban areas.

The province or state associated with the trip's starting location, offering regional-level analysis and comparisons.

The country of origin for the trip, facilitating international analysis and cross-border insights.

The address or location representing the trip's destination, allowing analysis of popular destinations and trip patterns.

The city where the trip ended, providing insights into the distribution of trips across different urban areas at the destination.
The province or state associated with the trip's destination, enabling regional-level analysis and comparisons at the destination.
The country where the trip ended, facilitating international analysis and cross-border insights at the destination.

The distance covered during the trip, allowing for analysis of trip lengths and distance-based metrics.

The total fare charged for the trip, providing insights into revenue generation and pricing strategies.

The status of the trip (e.g., ongoing, completed, canceled), enabling analysis of trip outcomes and customer satisfaction.
The delay in trip start time, measured in minutes, allowing for analysis of trip punctuality and potential operational issues.
The method used for payment during the trip, facilitating analysis of payment preferences and trends.

The status of the payment (e.g., successful, pending, failed), providing insights into payment processing and potential issues.
Unique identifier for the customer associated with the trip, allowing for customer-centric analysis and segmentation.

The name of the customer, providing a human-readable identifier for customer-related analysis and personalization.

Ride Rating Table

trip_id Unigque identifier for each trip record associated with the rating.
customer_rating Rating provided by the customer for the trip experience.
driver rating Rating provided by the driver for the customer's behavior during the trip.
customer _id Unique identifier for the customer who rated the trip.
driver_id Unique identifier for the driver being rated.

Key features of Delta Lake:

ACID transactions on Spark:

Delta Lake utilizes a transaction log to track all commits made to the table directory,
ensuring Atomicity, Consistency, Isolation, and Durability (ACID) transactions. It provides
Serializable isolation levels to maintain data consistency across multiple users.

Unified Batch and Stream Processing:

Delta Lake enables the integration of both batch and streaming data processing. It offers a
unified view of data from streaming sources (e.g., Kafka) and historical data (e.g., HDFS),
allowing seamless operations for streaming data ingestion, batch historic backfill, and
interactive queries.

Time Travel:

Delta Lake provides data versioning and snapshot capabilities, allowing users to query data
as if a specific snapshot represents the current state of the system. This feature enables easy
access to older versions of the data lake, facilitating activities such as audits and rollbacks.

Evolution of Delta Lake from Data Lake:

DELTA LAKE

Delta Lake represents a significant evolution from traditional Data Lake architectures,
addressing limitations and introducing advanced features.

Effective Transactional Control:

Delta Lake provides robust transactional control, ensuring reliable and consistent data
operations while maintaining ACID compliance.

Schema Evolution:

Delta Lake supports seamless schema evolution, enabling easy modification and evolution
of table schemas without disrupting existing data.

Delta Format Files vs Parquet:

Delta Lake's Delta format offers advantages over Parquet files, including optimized data
storage, improved query performance, and enhanced data management capabilities.

Medallion Architecture:

DELTA LAKE
T T l . Analytics
RS = o 1 | » and Machine
CH Learning
Ingestion Tables Refined Tables Feature/Agg Data Store
(Bronze) (Silver) (Gold)

Your Existing Data Lake

Azure Data Lake Storape

Medallion Architecture: Empowering Data Excellence with Layers of Trust

Bronze Layer:

The bronze layer in the Medallion Architecture stores un-validated data. It maintains the raw
state of the data source, allowing for incremental appends over time. The data in this layer
can come from a combination of streaming and batch transactions.

Silver Layer:

The silver layer represents validated and enriched data that can be trusted for downstream
analytics. It contains a refined version of the data compared to the bronze layer and serves
as a reliable source for analytics purposes.

Gold Layer:

The gold layer consists of highly refined and aggregated data that powers analytics,
machine learning, and production applications. The data in this layer has been transformed
into valuable knowledge rather than mere information. Gold tables play a crucial role in
delivering insights and driving decision-making processes within the organization.

Steps Involved:

15t we have started Storage account with access tier as HOT

= Microsoft Azure R Search resources, services, and docs (G+/) G Q 3 O,

H £

[storagiilllilf| Storage browser = =

B storageadfrg T Add container Upload () Refresh
% Favorites

> % Recently viewed

v W Blob containers

,/5' Diagnose and solve problems
Name Last modified Public acces
8o

Access Control (IAM)

@& Data migration

4/3/2023, 2:00:23 pm Private

B8 Storage browser

Data storage 54 Tables

B Containers

Inside delta lake we have to create Bronze, silver and Gold layer

Launch Workspace

With min of 8 max of 16 worker nodes.
Worker node memory 20GB with 10 cores each

Microsoft Azure databricks Q Search

(D) Data Science & Engi... > Workspace & s

Workspace B Shared v
Repos

Recents

Data

Compute

Workflows

Using below config. file able to mount the storage account with Databricks

FtorageAccountName ="
storageAccountAccessKey
blobContainerName = " ala
if not any(mount.mountPoint 1 a for mount in dbutils.fs.moun
try:
dbutils.fs.mount(
source /
mount_point
extra configs

: storageAccountAccessKey]

pt Exception as e:
print(e)
print(“al Yy mou . Try to unmount fi

° hfl:spark. read.option(’).option("inf
df2=spark.read.option(’ ;).option("inf

server_name = .dat
databa
url =

table_name

dfl.write.jdbc(url,table=table name,mode="3a

df2.write.jdbc(url,table="

Now we will create DataFlow(Low code no code) in Azure Data factory to load data from
SQL Database to bronze layer of delta lake

We also need to create link service which we need to provide in source properties

Microsoft Azure | ProjectprorgADF B search ¥ o (%
7 B sample branch . & Validate al 1) publish
ﬂ‘ Factory Resources ¥ « érﬁ TnpTransactionfact éﬁ Reward_Points_Fact X
' o it Vo s €1 Saved v Validate a Data flow debug
b Pipelines 3 & sourcel A sink1
° b Change Data Capture (preview) (] a e — 5
b Datasets 2 5 total -'.+ S
P 4 Data flows z
éﬁ Reward_Points_Fact
& TripTransactionfact Vv
b Power Query (]
b Templates]

Source settings Source options Projection Optimize Inspect Data preview

Qutput stream name * source Learn more _
Description mpeprt data from Rewards Table :“ Reosat

Source type = =] | B

In sink we will select blob storage and default format that we would like to load.

Once done we have to save and validate if all the components are fine, then we can publish
the dataset, it will publish to git branc also we can trigger this pipeline once we are done
with publish.

When we trigger our pipeline or debug we need to monitor our logs.

Miogoft Azke ijpmrqA i
« « . .
Pipeline runs
@ Dashboards
ﬁ Home s
Triggered Debug) Refresh
Runs
.'-, Author @) pipeline runs Local time : Last 24 hours _ Pipeline name : All (status: AN
B i NP A
. Monitor #»Trigger uns ¥ Addfilter X End time range
£8 Change Data Capture (previ.. () Last 24 hours
— Showing 0 - 0 items =
Manage T _J Last 7 days
untimes & sessions .
i N = ™~ Tri
Pipeline name Run ®) Last 30 days Status n
W Learning Center & Integration runtimes ‘ | :
_ Custom
&P Data flow debug
Time zone
Notifications B

Mountain Time (US & Canada)... ~ \

A\ Werts & metrics

v e e mmmes 1O ShOW

Microsoft Azure ProjectprorgADF P Search = QS
«

» T
Pipeline runs
ﬁ ﬁ Dashboards

Triggered Debug :; Refresh
Runs —
' B3 pipeline runs Local time : Last 30 days Pipeline name : All Status : All . Add filter 5 X D Copy filters w ExporttoCSV =V
3
© £ Trigger runs Showing 1 - 13 items Last refreshed 2 minutes ago
€8 Change Data Capture (previ — . . » 2 < =
N __ Pipeline name Tv Run start 4 Runend T¢ Duration Status ¥ Triggered by Run ID
Simiies & svsilons —0:: gl I 000420 @ succeeded Manual trigger R,
@ O inegration runtimes O e SES————— 000325 O railed @ Manual trigger Ry
& Data flow debug ol:o:: - “ 00:04:05 © succesded Manual trigger “ -
Notifications O e S 5005 000403 @ succeeded Manual trigger e
A Alerts & metrics —02: S gl 000z @ succeeded Manual tigger Erere——
L) B el —)12 O railed @ Manual trigger ey -
[] D02, NS PSS — 000312 Q railed @ Manual trigger e
p B e s (00402 O railed @ Manual trigger i

Below shows data received at sink

Microsoft Azure 2 Search = Q
» € All pipeline runs > pipeline2 - Activity runs > Data flow1
ﬁ & Dashboards @ Pipeline was modified after this run. The current pipeline configuration is shown
Runs o Data flow1
,’ @ Pipeline runs Cluster startup time:2m 515 Number of transformations: 2 Data flow status: Success
0 R — (O Refresh Auto refresh @ o0 7 cditdataflow
% Change Data Capture (previ...
Runtimes & sessions
ﬁ' & Integration runtimes
& Data flow debug
Notifications
A\ Alerts & metrics
Sinks All streams
Sink Status Processing time T Highest processing time Rows written T
sink1 0 Succeeded 30s 13s -

Can validate via query editor.

bl & 0

—; Microsoft Azure O Search resources, services, and docs (G+/)

Home df (v g

e rgadf (rgadf/rgadf) | Query editor (preview)
A gadf (rga

B Activity log

@ Tags

Settings

Data manaagement

Query 1

Save query

1 kelect count(*) from idbo].[rating_reward_points];

Now we will do processing of data via databricks.

from delta.tables imp
from pyspark.sql.functions im

[]

ort *

df1=spark.read.option(”

df1.count()

out[2]: 2004

dfl.write.saveAsTable("trip transact

from trip transactions;

t","delta').load("/

2022-12- 2022-12-

04T05:17:52.000+0000 04T07:17:52.000+0000 Al

2022-12- 2022-12-

A2

04T07:17:52.907+0000

2022-12-
04T09:17:52.907+0000

2022-12-
04T11:17:52.907+0000

2022-12-
047T13:17:52.907+0000

04T09:17:52.907+0000

2022-12-

04T11:17:52.907+0000 A3

2022-12- Ad
04T13:17:52.907+0000
2022-12-

04T15:17:52.907+0000 AS

Ram

21/3, Jubliee hills

172/4, Gandhi nagar

9/3-12, T-nagar

10/3, Madurai main

6/4, Malleshwaram road

Hyderabad null

Delhi

Chennai null

Madurai null

Bangalore null

[]

deltaTable.alias("trip transa
source = updatesDF

condition = " tr trip id = updates.trip id"

).whenMatchedUpdateAll().whenNotﬁatchedInsertAll().execute()

[] dfi.filter(dfi.trip id==2r).show(truncate=

No we will work on silver layer, where we will transform our data to make facts dimension
data modelling.

Fact- Dimension Data Modelling

Rating
Location
Driver Dimension
Trip
Transaction
Fact
Date
Customer Payme
Dimension nt
details

import pyspark.sql.functions as F
from random import randint
from pyspark.sql.types import *

df1=spark.read.format("delta”).load("/mnt/

df1.createOrReplaceTempView("df1")

df2=spark.sql('select distinct customer id,customer name from dfi")

customer age(customer id):
return randint(" , 7
customer gender(customer_id):
if customer 1™

return "M’

return "F"

yspark.sql.functions
dfl=spark.read.load(" /m
df2=dfl.select("trip_id",
df2=df2.withColumn("Due_Date",F.expr("to_

df2.repartition(1l).write.save("/m

Like wise we will create all dimension table

Now for email or notification we need to create ADF pipeline

Microsoft Azure ‘ ProjectprorgADF B search

€) / §% sample branch N v Validate all &} M publish Preview experience o off O
ipeli *
A Home Factory Resources v « @D pipeine3
= s 3 7 5 =]
¥ Filter resources by mame i Activities ¥ « S #2 Saveastemplate Validate [> Debug % Add wigger 1O =Y
R Author y
4 Pipelines 3 L Search activities Web
. Monitor —> p4
0D pipelinet > Move & transform N . Web1
Manage @D pipeline2 > Synapse
0D pipetine3 > Azure Data Explorer
@ Leaming Center Notebook Set variable Web
4 Change Data Capture (preview) 0 > Azure Function - ~
— ~» - —
> Datasets 2 S Batch Service @ Notebook1 x (,\) Set variable1 . Web1_copy1
4 Data flows 2 > Databricks
& Reward_Points_Fact > Data Lake Analytics
&P TripTransactionfact > General -
Parameters Variables Settings Output
b Power Query ° > HDInsight
b Templates 0 > Iteration & conditionals + New

> Machine Learning

> Power Query

In web activity properties we need to provide logic app URL, once trigger it will post a API
request with message in body, providing parameters

Pipeline expression builder 7

Add dynamic content below using any combination of expressions, functions and system variables.

{ 1
“pipeline”:"@{pipeline().Pipeline}”,
"Success/Failure”:"Success”,

"DatafactoryName”: "@{pipeline().DataFactory}”,
"pipelinerunld”:"@{pipeline().RunId}",
"Time™:"@{pipeline().TriggerTime}",

"Message”:"Pipeline has run sudcessfully.”

™

Clear contents

Activity outputs Parameters Systemvariables Functions Variables

~ Search

Notebook1
Notebook1 activity output

Notebook1

— Microsoft Azure O Search resources, services, and docs (G+/)

Home ogicapprgadf | Workflows ema ngger_logic_app

o email_Trigger_logic_app | Designer

255.9 X Discard [@] Parameters {} ViewCode (1) Info {3} Fileabug || Generally Available Designe
Developer
</> Code
Designer
Settings
9 When a HTTP request
@ Access Keys is received

‘ Send an email (V2)

Data bricks code to write gold layer of storage account

Creating a Delta Table in Gold Zone with below Details:

1.Fetching the highest number of rides by month per driver and highest number of trips

and highest spent customer by month & by the year.
2.Fetching the top rated driver for by the year.

3.Fetching the highest spent customer & highest distance travelled customer.

Fetching the highest spent customer & highest distance travelled customer.

pyspark.sql.functions i rt broadcast
t pyspark.sql.function

dfl=spark.read.load (" /mn

df2=spark.read.load("/mnt/D

df3=spark.read.load("/mnt/Del

dfd=spark.read.load (" /mnt/Del

df5=df1l.join(broadcast(df2),dfl.customer_id==df2.Customer_id)

df5.rdd. getNumPartitions ()

df5=df5.select("trip id","Customer Name","cu
"driver id","total distance"”,

dfe=df6.select("trip id","Customer Name","cu
"total distance’ '

df7=df6.join(df4,df4.date==df6.Trip Date)

df7.createOrReplaceTempView("df7")

Highest Spent & Highest distance travelled by Customer

[] df_customer_spent distance=spark.sql("select customer_name, rank_total distance,rank_total_fare,\
total_distance,total fare , rank_trips_count ,concat(month,year) as month_year,trips_count from\
(sel ustomer_name, rank() over(partition by month,year order by total_distance)as rank_total distance,)
rank() over(partition by month,year order by total fare desc) as rank_total_ fare,
total_distance,total fare,month,year, rank() over(partition by month,year order| by trips_count desc) \
as rank_trips_count,trips_count from (select customer_name,sum(total fare) as tptal_fare,month,year,\
sum(total distance) as total_distance,count(trip_id) as trips_count from df7 grpup by customer_name,month,year))\
where rank total distance=1 or rank total fare=1 or rank trips count=1 order by concat(month,year)™)

Writing to delta table which is hive meta store

We Can connect these Hive meta table to Power Bl to get insight from these tables.

Details Trip Count Trip (Miles) Avg Trip (Miles) Trip (Min) Avg Trip (Min) L RET
03-Apr- 986 .= 5,309 \ 54 \ 15,195 @ 16.8 © 5.4
LaRgLhiCe D s, ,._.A.M"*. [V WPow LTV SN VY.V W LY AaoadSnidd

Frio Mafrios Product Type Trip Count by Date Hierarchy

I Trip Count v |All v]

Fare Currency City

[v (A v

Trip Count by Weekday

200

140 130
6.0

167.0 164.0

145.0 Q3 Q3 4 1 Q2 Q3 Q4 Q1 Q2 Q3 4 Qf Q2 Q3 4 Q1 Q2 Q3 Q4 Q1 02 Q3 Q4
2013 2014 2014 2015 2015 2015 2015 2016 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018 2018 2019 2019 2019 201

100 1270 1210

Trip Count by City and Latitude/Longitude
Mon Tue Wed Thu Fii
Trip Count by Hour & Weekday

Hours Mon Tue Wed Thu Fri Sat

12AM - 3AM
IAM - bAM

HAM - SAM

12°PM - 3PM I_J

IPM - 6PM

GPM - 9PM

Challenge Faced

e Data quality: Ensuring the accuracy, completeness, and consistency of data from
diverse sources.

e Scalability: Handling large volumes of data and accommodating future growth.

e Data integration: Integrating data from various systems and sources to create a
unified view.

e Real-time processing: Performing timely data processing and analytics to enable real-
time decision-making.

Business Benefit

e Improved data analysis and decision-making.

e Optimized data processing efficiency.

e Streamlined and organized data architecture.

e Enhanced data workflow efficiency.

e Advanced data transformation capabilities.

e Automated data processing and increased resilience.
e Proactive monitoring and quality assurance.

By: Abhishek Verma
Senior Associate- Cognizant
vermabhi.90@gmail.com

	Problem statement
	Business Benefit

